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Abstract: The paper aims to outline the key design principles of the aero pendulum balancing system and its three related 

controllers: LQR, LQI, and LQG. The design incorporates dynamic principles and Newton's laws, leading to a non-linear 

mathematical model that must be converted into a linear form for control design. The LQR controller is selected as the central 

controller, serving as a foundation for developing the LQI and LQG controllers to guarantee stability and eliminate interference 

within the Aero pendulum system. The MATLAB Simulink program is employed due to its smooth integration with the Arduino 

board and Aero pendulum, allowing for simulation and experimentation. The controller logic utilizes the system's features to 

stabilize the Aero pendulum and uphold the desired angle through simulation. The article assesses the controller design based on 

the Aero pendulum's inherent structure and angular performance, contrasting it with the design derived from its mathematical 

model and analyzing the performance index of the control system. In conclusion, the article highlights the use of LQR, LQI, and 

LQ controllers for stabilizing the Aero pendulum, underscoring the efficacy of the linear equation from the mathematical model 

in managing and stabilizing the system. 
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I. INTRODUCTION1 

Feedback control encompasses both traditional and 

modern control methodologies. Conventional control 

techniques, such as those utilizing Proportional-Integral-

Derivative (PID) controllers [1-2], typically involve 

deriving a mathematical model represented by differential 

equations. This model is then transformed from the time 

domain to the frequency domain and illustrated using a 

block diagram. Conventional control approaches generally 

operate under a single-input-single-output (SISO) 

framework. System stability is evaluated through methods 

like Root Locus in system analysis, which leads to the 

controller's gain value design. 

In contrast, modern control methods allow for the 

establishment of mathematical models without needing a 

transformation to the frequency domain. Control rules, such 

as pole placement or designs involving Linear Quadratic 

Regulator (LQR), Linear Quadratic Integrator (LQI), and 

Linear Quadratic Gaussian (LQG) controllers, can be 

determined based on stage specifications [2-4]. This method 

may result in additional variables; for instance, in the case 
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of a second-order system, two state variables—X1 and 

X2—would necessitate the use of two sensors for 

measurement. However, implementing state estimation 

techniques, like the Kalman filter [5], allows for estimating 

system states using only a mathematical model alongside the 

available measured states. This can potentially reduce the 

necessity for measuring both states, contingent on verifying 

system observability. 

This article explores the control of an aero pendulum 

utilizing LQR, LQI, and LQG controllers to enhance the 

control performance and stability of the system. 

II. MODELING OF THE AERO PENDULUM 

The control developer affords a condensed and low-cost 

testing stage for the practical demonstration of the feedback 

control concept that reasons are agreed well with the report 

[13] .  In this research, the aero-pendulum of angle position 

control and disturbance reimbursement approach was 

created for an aero-pendulum using the soft computing 

paradigm of Simulink. The pendulum arm is rotated via the 

thrust generated by one axial contra-rotating powered 

propeller installed at its free end, shown in Figure 1.  The 

propeller assembly, shown in Figure 1, consists of axial 

rotors installed on concentric shafts. 
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1 Free body diagrams of aero-pendulum 

The rational equation of motion and voltage applied to 

a DC motor can thus be written as follows: 

 

( ) ( ) (2)mT s K V s   

 

From Eq. ( 1) , The pendulum gets the stability.  Then, 

one can obtain ( ) 0
d

t
dt
  and

2

2
( ) 0

d
t

dt
  .  In this way, 

Eq. (2) can be written as 
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Where  is the angle at the stable situation.  Thus, 

substituting Eq. (2) in Eq.(3) leads to 
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Fig. 2 Experiment kit of aero-pendulum 

Finally, from Eq.  ( 1)  and Eq.  ( 2) , the open-loop block 

diagram of the pendulum system can be obtained as 

follows: 

V(s) T(s) θ(s)

 

Fig. 3 Open-loop diagram of suspended pendulum 

Now, from the above figure, the transfer function of the 

suspended pendulum can be written as follows: 
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The design features a robust steel base measuring 3 mm in 

thickness, 4 cm in width, and 60 cm in length, weighing 

approximately 0.22 kg. This base is anchored to an acrylic 

column at the center using bolts, ensuring stability for the 

test setup during operation. The system is connected to the 

Aero Pendulum axis via a variable resistor, providing 

precise control over its movement. Attached to the system is 

a 12-volt DC motor, which incorporates a propeller for 

functionality. The entire assembly is designed to move 

along the Aero Pendulum axis, with one end secured and the 

other held fast by a dedicated fastener. The spindle used in 

this setup has dimensions of 3 mm in thickness, 1.5 cm in 

width, and 12.7 cm in length. For the resistance circuit 

control, a resistor with a value of ten kΩ is employed, 

featuring a 0.5% error margin and 0.5% linearity. This 

component is critical for adjusting the Aero Pendulum axis 

accurately. In response to thrust torque, the pendulum's 

angular motion is governed by a second-order differential 

equation. The derived equation of motion has led to the 

formulation of Root Locus models in the time domain. 

Parameter estimations have been conducted, resulting in 

values detailed in Table 1 for the Aero Pendulum model. 

TABLE I 

PARAMETER CONSTANTS FOR AERO PENDULUM MODEL  

 

Parameter  VALUES  

K  7.65 m/s 

L  0.23 m 
m  0.22 kg 

         d  0.015 m 
J 0.51 kg.m2 
g 9.81 m/s2 

c  0.0027 kg.m2/s 

Upon computing the transfer function in accordance with 

Equation 3  derived from the Aero Pendulum model, the 

following results are obtained: 
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III. CONTROLLER DESIGN 

The Aero pendulum controller design theory comprises 

three parts. The first part delves into the LQR controller 

design theory, known for its robustness to system parameter 

changes and ability to eliminate incoming disturbances. The 

second section elaborates on the LQI controller design 

theory. The model showcases its increased robustness to 

system parameter variations and its ability to enhance the 

integral to eliminate noise with unit gain entering the 

system. Lastly, the third section explores the theory of LQG 

controller design, highlighting its robustness to system 

parameter changes by incorporating a feedback observer to 

estimate the state and its capacity to eliminate incoming 

noise. 

A. LQR controller 

The LQR controller design [6] is a control 

methodology that relies on feedback from the state signal 

within the Aero pendulum control system. The control 

signal's gain is computed, as depicted in Figure 4.  In the 

LQR (Linear Quadratic Regulator) design process, 

identifying closed-loop characteristics that align with our 

design objectives is crucial for determining the optimal gain 

matrix (K). It is important to evaluate the performance of 

the system relative to the effort required to achieve that 

performance, as this relationship can significantly influence 

the effectiveness of the control strategy. 

The linear quadratic regulator (LQR) theory is 

primarily formulated for linear mathematical models. In the 

existing literature, several methodologies are available for 

determining a linearized mathematical model, including 

identification techniques, linearization methods, and the 

State-Dependent Riccati Equation (SDRE) approach. It is 

important to note that the SDRE method applies only to a 

specific type of nonlinear system model. 

Typically, the process of nonlinear optimal control 

involves employing Jacobian linearization around various 

operating points of the model system. In this context, this 

paper assumes that the nonlinear mathematical model of the 

system under study is well-defined. By linearizing this 

model at several operating points (denoted as k), we can 

derive a range of more straightforward and localized 

mathematical representations of the system. This approach 

facilitates a better understanding and implementation of 

optimal control strategies for the nonlinear system. 

 

 

 
 

Fig. 4 Block diagram LQR control system. 

 

The design aims to minimize the performance index 

value J (performance index) to the most significant period 

possible. 

 

 
0

(7)x xT TJ Q u Ru dt



   

 

In this scenario, Q is a positive quasi-definite 

symmetric matrix used as a significant weighting matrix in 

regulating individual state variables. On the other hand, R is 

a positive-definite symmetric matrix serving as a weight for 

the control signal without any constraints. Determining the 

optimal K-value for this system allows for the computation 

of an optimal control signal. 

 
1( ) ( ) ( ) (8)x xTu t K t R B P t     

 

For the matrix P can reduced as follow:  

 
1 0 (9)T TA P PA PBR B P Q      

When designing the controller based on Eq. 9, it is essential 

to calculate the optimal value of matrix P for stability. The 

system's positive symmetric nature is crucial for stability to 

verify stability, and it is necessary to confirm that the A-BK 

matrix is stable and then substitute matrix P to derive the 

most suitable K value. 

B.  LQI controller 

The LQI (Linear Quadratic Integral) controller design 

is an advanced control method employed in the Aero 

pendulum control system, utilizing feedback from status 

signals. In this design, the control signal gain is 

systematically calculated, and an integral component is 

incorporated to mitigate interference caused by the unit 

development rate entering the system, as illustrated in 

Figure 5.  

The LQI control method significantly broadens the 

range of states that influence the control input, denoted as 

R(s). By integrating additional dimensions into the control 

design, this approach enhances the reference tracking by 

correlating directly with the number of outputs included in 

the system. Examining the theoretical principles 
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underpinning LQI control can help one gain a deeper 

understanding of this phenomenon. 

 
 

Fig. 5 Block diagram LQI control system. 

The signal control can represent as follow Eq.10: 

   (10)iu Kz K x x     

The control law shown in (10) is designed to minimize the 

cost function below (assuming a reference value of zero) 

0

( ) { 2 } (11)T T TJ u z Qz u Ru z Nu dt



    

The current study involves the controller's tracking 

operation for two output variables. The xi vector contains 

two members representing the errors for the respective 

terms. Additionally, the vector z consists of seven members, 

which comprise the original state variables and the two 

error terms: 

* * * *

3 3 6 6 EPR (12)nz n p T p T e e   
 

To find en, subtract the reference rotor speed from the actual 

rotor speed, and for eEPR, calculate the difference between 

their respective EPR values. 

C. LQG controller 

In the LQG controller design[8], a control 

methodology utilizes the feedback principle of state signals 

within the Aero pendulum control system to calculate the 

control signal's gain. A feedback observer design, such as 

the Kalman filter, assesses the state and reduces the impact 

of noise entering the system. This process is illustrated in 

Figure 6.  The linear quadratic Gaussian (LQG) control 

scheme is an effective method for managing output 

measurements corrupted by Gaussian noise and can be 

applied to control perturbed non-linear systems. This 

approach is characterized by its simplicity in design and 

ease of implementation, requiring a minimal number of 

design parameters. Moreover, it is computationally and 

algorithmically less complex, as it addresses a minimizing 

quadratic cost function to derive an optimal state feedback 

law.  

 

The LQG framework represents an optimal stochastic 

control design problem, integrating the Linear Quadratic 

Regulator (LQR) principles and the Kalman filter for 

comprehensive state feedback and state estimation. 

Applying the separation principle in LQG control design 

facilitates implementation, enabling the independent design 

of the state estimator and the feedback controller.  

A crucial aspect of the LQG design process is the 

individual design or acquisition of the optimal state 

feedback (K_lqr) and state estimation (K_se) gains 

associated with the LQR and Kalman filter, contingent upon 

fulfilling the controllability (or stabilizability) and 

observability (or detectability) criteria. Fulfilling these 

criteria is essential for the successful resolution of the 

Riccati equations governing optimal state feedback and 

state estimation gains.  

In scenarios where certain system states may be 

unobservable, as often encountered in real-world control 

design applications, the Kalman filter can be utilized for 

complete state estimation, provided that the system's 

available measurements contain critical information 

regarding the system states. The Kalman filter functions as a 

low-pass filter, demonstrating efficacy in rejecting 

disturbances within the system. The control input and 

system output are the primary inputs to the Kalman filter. 

 

Fig. 6 Block diagram LQG control system. 

 

The conventional structure of the Kalman filter 

typically includes a set of iterative equations. The system's 

discrete model P and the system covariance matrix, along 

with L, the Kalman gain matrix, are updated continuously 

through these iterative equations (13). L can be derived 

from this set of iterative equations. These iterative equations 

are initiated with an initial covariance matrix P(𝑘/𝑘). 

 

 

 

 

 ( 1/ ) ( ) ( / ) ( ) ( ) ( ) (13)T T
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The procedure continues by reintroducing the 

covariance P(𝑘 + 1/𝑘 +1), (15), into equation (13) as P(𝑘/𝑘) 

until L(𝑘 +1) stabilizes. In this context, 𝐂d(𝑇) represents the 

disturbance transition, Re stands for measurement noise 

covariance, and Qe denotes disturbance noise covariance 

matrices. Suppose P(𝑘/𝑘) = P1, P(𝑘 +1/𝑘 + 1) = P3, and P(𝑘 

+ 1/𝑘) = P2, then equations (13) – (15) are transformed into: 

 

2 1 (16)T T

d e dP AP A C Q C   

 
1

2 2{ } (17)T T

eL PC CPC R    

 

3 2{ } (18)P I LC P   

IV. EXPERIMENT 

The discussion involves a computer-based simulation of 

the Aero pendulum using a mathematical model to establish 

the controller and assess its stability [9]. The assessment is 

divided into two components. The initial segment focuses 

on the computer-based simulation of the Aero pendulum. At 

the same time, the subsequent part entails the simulation and 

experimentation of the LQR, LQI, and LQG controllers 

used to regulate the Aero pendulum. 

A. The simulation of an Aero pendulum via computers. 

       The analysis of the Aero pendulum through computer 

simulation involves determining the moment of inertia by 

continuously adjusting the lower equilibrium point of the 

control system until the desired value is achieved. This is 

accompanied by introducing a noise signal into the system 

using a pulse signal. The testing of the Aero pendulum 

involves a 10-second noise signal to ascertain its open-loop 

oscillation response. Natural structures and mathematical 

models are then utilized to create a computer model of the 

Aero pendulum, as illustrated in Figure 7. 
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Fig. 7 Angle for Aero pendulum with disturbance signal 

 

B.  Experimenting with controlling the Aero pendulum 

With LQR. 

      In this section, we will explore the application of an 

LQR controller to maintain the stability of the Aero 

pendulum. The LQR controller has been designed and 

tested with the Aero pendulum structure. We will discuss 

the computer simulation and control of the actual structure 

to ensure the Aero pendulum's stability. Additionally, we 

will introduce pulse noise into the Aero pendulum control 

system to observe its effects, as depicted in Figure 8. 

Furthermore, we will showcase the application of an LQR 

controller to stabilize the Aero pendulum at the equilibrium 

position, as illustrated in Figure 9. 
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Fig. 8 Program for Simulink LQR controller. 
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Fig. 9 Angle for Aero pendulum with LQR controller. 

C.  Experimenting with controlling the Aero pendulum 

With LQI. 

     In this segment, we will be focusing on simulating 

control mechanisms to ensure the Aero pendulum's stability 

using the LQI controller derived from the design and 

practical assessment of the Aero pendulum system[10]. The 

discussion will encompass the computer simulation and 

control of the physical structure to maintain the stability of 

the Aero pendulum. Furthermore, the introduction of pulse 

noise into the Aero pendulum control system, leading to 

instability, will be addressed. The block diagram in Figure 

10 and the noise depicted in Figure 7 will be referenced, 

culminating in Figure 11, which illustrates the outcome of 

utilizing an LQI controller to stabilize the Aero pendulum at 

the equilibrium position. 
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 Fig. 10 Program for Simulink LQI controller. 
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Fig. 11 Angle for Aero Pendulum with LQI controller. 

D.  Experimenting with controlling the Aero pendulum 

With LQG.       

In the following topic, we will explore simulating 

control methods to ensure the stability of the Aero 

pendulum using the LQG controller[11,12]. The controller 

is designed based on experimentation with the Aero 

pendulum structure. We will cover computer simulations 

and the control of the physical structure to maintain the 

stability of the Aero pendulum. Additionally, we will 

introduce pulse noise into the Aero pendulum control 

system to intentionally destabilize it. Figure 1 2  illustrates 

the block diagram, while Figure 7  displays the introduced 

noise. Furthermore, Figure 13  depicts the Aero pendulum 

control system utilizing an LQG controller to stabilize the 

pendulum at its equilibrium position 
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 Fig. 12 Program for Simulink LQG controller. 
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Fig. 13 Angle for Aero Pendulum with LQG controller. 

 

In evaluating the Aero pendulum's simulation and 

control system, the experiment compared the LQR, LQI, 

and LQG controllers with the actual Aero pendulum 

structure. The angular values of the Aero pendulum were 

observed for stabilization, as indicated in Figure 14. 
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Fig. 14 Angle for Aero Pendulum with compare the 3 controller. 

 

E. Comparison of performance index    

      According to the experimental results shown in Figure 

14, the LQI controller successfully stabilizes the Aero 

pendulum, exhibiting higher effectiveness in attaining 

balance compared to the LQR and LQG controllers[14,15]. 

This thesis evaluates the balance robot control system's 

performance using the Integrated Error Square (ISE), which 

involves integrating the squared error over time. 

 

2

0

( ) (11)ISE e t dt



   

 

One hundred randomly generated resolution values have 

been used to evaluate the performance of the LQR, LQI, 

and LQG control systems. 

 

TABLE II 

PERFORMANCE INDEX VALUE 

Controller VALUES  

LQR Controller 0.733 

LQI Controller 0.693 

LQG Controller 0.742 

 

V. CONCLUSION 

The article summarizes the design of the LQR controller 

and can serve as a foundation for developing the LQI and 

LQG controllers. The article aims to ensure that the aero 

pendulum can maintain its balance. Three prototypes are 

required for this purpose. Understanding the mathematical 

principles of the aero pendulum is crucial before 

proceeding. The article in the thesis discusses these 

fundamental principles. Newton's aero pendulum 

encompasses the mathematics of the aero pendulum and 

considers the principles and factors for the design and 

science of the aero pendulum based on centralized kinetic 

energy. 

     Furthermore, the mathematics of the aero pendulum is 

rooted in an ideal Newtonian axis that prevents calculations, 

causing Pose in the mathematics of the aero pendulum. The 

article also delves into using the principles of the aero 

pendulum as the basis for the subsequent drive system. 

Considering the perspective and feeling that typically 

govern the aero pendulum, the article thoroughly examines 

the aero pendulum system. It compares the structural design 

components, assesses the angular performance of the aero 

pendulum with the body, elucidates the fundamental 

principles of the aero pendulum, and calculates the index 

value. The control system of the aero pendulum is 

scrutinized using LQR, LQI, and LQG control systems. 

Based on the aero pendulum's mathematics, this evaluation 

ensures that it maintains properties, allowing it to retain its 

balance.  
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