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Abstract:  Time- varying multivariate statistical process control ( TMSPC)  has been suggested as a method for monitoring 

processes, detecting faults, and diagnosing issues in systems where variables change over time. This is an adaptation of multivariate 

statistical process control (MSPC) , which is typically used for processes where variables are stable and not influenced by time. 

However, in certain processes, such as those in solar photovoltaic systems, variables like temperature, voltage, and current fluctuate 

over time.  Thus, TMSPC has been proposed as a monitoring and diagnostic tool for these time- dependent processes.  The 

effectiveness of this technique has been demonstrated using a solar photovoltaic system at Research & Development Institute, 

Nakhon Phanom University, Thailand (RDI-NPU). 
 

Index Terms— Solar photovoltaic system, multivariate statistical process control, principal component analysis, monitoring system, time-

variant 

 

I. INTRODUCTION1 

SOLAR energy has seen widespread adoption in numerous 

electrical applications, including homes, farms, and 

industries [1]. This trend is driven by significant reductions 

in the costs associated with manufacturing, installation, and 

operation.  Despite these cost reductions, solar energy 

implementation remains confined to regions with high 

sunlight intensity and is also restricted during periods with 

low light, such as rainy or winter seasons. Consequently, the 

successful use of solar energy is heavily influenced by 

environmental conditions.  

Light is a crucial factor in solar energy production. 

Typically, the photons from light hitting the solar panels vary 

throughout the day. On bright days, energy production is 

high, whereas on foggy or cloudy days, it decreases. This 

variability shows that solar energy production is inconsistent 

and depends on the surrounding environment. Fluctuations 

in light lead to fluctuations in energy output, resulting in 

suboptimal battery charging performance, which poses 

challenges for energy management. Effective energy  
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management requires continuous monitoring and analysis for 

future energy planning and operations.  Additionally, other 

environmental factors around the solar cell installation site 

should also be measured and monitored. 

To efficiently monitor and diagnose processes with 

numerous variables, multivariate statistical process control 

(MSPC) should be used [2] [3] [4]. This technique employs 

feature extraction methods to select the variables with the 

most variance, which are then utilised to create monitoring 

charts and contribution plots for fault diagnosis.  MSPC is 

typically limited to multivariable processes that operate 

under normal operational conditions ( NOC) , where the 

process set point remains constant over time. However, solar 

photovoltaic systems are dynamic processes.  Thus, 

implementing MSPC for these systems requires adaptation 

for time- varying conditions.  In this article, time- varying 

multivariate statistical process control (TMSPC) is proposed 

and demonstrated using a solar photovoltaic system.  

II. TIME-VARYING MULTIVARIATE STATISTICAL PROCESS 

CONTROL 

The procedure of TMSPC is composed of data 

preparation, training process, monitoring charts and fault 

detection & diagnosis.  This section will briefly describe the 

proposed TMSPC. 
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A. Data preparation 

For the collected variables of solar cell data, the dataset is 

designed as three-dimensional (3D) data X[I×J×K] which I 

is the date of collection, J is the variable and K is series of 

time. This can be represented as a block shown in Fig 1. The 

dataset must be standardised prior to process dimension 

reduction. Then this dataset will be extracted feature by using 

principal component analysis (PCA) technique [5] which 

will be described in the next section. 

B. Time-varying principal component analysis 

PCA can only handle two-dimensional (2D) datasets, so it 

is necessary to convert a 3D dataset into a 2D one. 

Traditional method to transform from multi-dimension to 2D 

is a multi-way method [6] [7] [8] [9]. The method tries to 

concatenate the two variables into on variable so the 

dimension is reduced from 3D to 2D. However, this article 

suggests reducing dimensions by slicing the dataset at each 

time interval. Thus, the dataset X[I×J×K] is transformed into 

XK[I×J], where XK represents the data with [I×J] dimensions 

at time K, a process known as time-varying principal 

component analysis (TPCA). The following step involves 

applying the PCA procedure. 

PCA is a method used to extract features from a 

multivariable dataset. Given a dataset X[I×J], it can be 

decomposed as a linear combination: 

 

 𝐗 = �̌��̌�𝑇 (1) 

 

where �̌� is score matrix [ I × J] , �̌� is loading matrix [J × J] 

and superscript T is transpose of matrix.  By reduction of 

dimension, number of variables J may be selected only R 

variables, R ≤ J. So, the dataset X[I × J] can be rewritten as 

 

 𝐗 = 𝐓𝐏𝑇 + 𝐄 (2) 

 

where 𝐓 is score matrix [ I × R] , 𝐏 is loading matrix [J × R] 

and 𝐄 is error matrix [ I × J] .  This is a training process to 

obtain score and loading matrix with reduction size of 

variable to R. 

The above process is for 2D dataset so for this proposed 

each time series will be trained and obtained both score and 

loading matrix at each time K. 

 

 𝐗𝑘 = 𝐓𝑘𝐏𝑘
𝑇 + 𝐄𝑘 (3) 

 

The next process will be using those parameters to 

construct the monitoring chart and fault analysis. 

C. Hotelling’s T2 monitoring chart 

Hotelling’s T2 will be constructed as a monitoring chart. It 

is constructed from score of each variable which can be 

calculated from 

 

 𝒕𝑘 = 𝒙𝑘𝐏𝑘 (4) 

 

where 𝒙𝑘 vector data [1 × J] at time k and 𝒕𝑘 vector score [1 

× R] at time k. Monitoring chart can be constructed from the 

new data, in here, Hotelling’s T2 (𝑇𝑘
2) has been constructed. 

 

 𝑇𝑘
2 = ∑

𝑡𝑘,𝑟
2

𝑠𝑡𝑘,𝑟

2

𝑅

𝑟=1

 (5) 

 

where 𝑡𝑘,𝑟
2  –  square score at index r and 𝑠𝑡𝑘,𝑟

2  –  variant of 

score at index r at time k. 

Likewise other control system, monitoring chart will 

alarm when 𝑇𝑘
2 is over control limit. Only upper control limit 

(UCL) is applied for Hotelling’s T2 monitoring chart. In case 

of trained data (Phase I), the UCL is caculated from 

 

 𝑇𝑈𝐶𝐿
2 =

(𝐼 − 1)(𝐼 − 1)𝑅

𝐼(𝐼 − 𝑅)
𝐹𝜐(𝑅, 𝐼 − 𝑅) (6) 

 

where 𝑇𝑈𝐶𝐿
2  is upper control limit of 𝑇𝑘

2, 𝐹𝜐(∙,∙) is F – 

distribution. 

The control limit is also used as a criterion for evaluating 

the trained dataset. If 𝑇𝑘
2 of all training data is less than 𝑇𝑈𝐶𝐿

2 , 

then all data used in the training process is acceptable. 

However, if any data has 𝑇𝑘
2 > 𝑇𝑈𝐶𝐿

2 , it indicates that the data 

is not acceptable and should be removed from the model. The 

training process should then be repeated without this data. 

When the training data passed this criterion, it will be used 

as the standard model for further new data. 

When obtaining new data at time k, the score of the new 

data can be obtained by multiplying the loading matrix, 

which obtained from TPCA, following Eq. (4). Then 

Hotelling’s T2 monitoring chart and control limit for new 

data will be constructed. However, for new data (Phase II), 

the UCL will be calculated from 

 

 𝑇𝑈𝐶𝐿
2 =

(𝐼 − 1)(𝐼 + 1)𝑅

𝐼(𝐼 − 𝑅)
𝐹𝜐(𝑅, 𝐼 − 𝑅) (7) 

 

Next section, when the fault occurs, fault detecting and 

diagnosing will be described. 

D. Fault detection & diagnosis 

If 𝑇𝑘
2 > 𝑇𝑈𝐶𝐿

2 , it signifies that a fault has been detected or 

the system is out of control.  To identify which variables 

caused the fault, a contribution plot can be used [10]  [11] . 

 
Fig. 1.  Block of dataset for time-varying principal component analysis 

(TPCA) processing. 
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Referring back to Eq.  (4) , the contribution plot shows the 

projection of individual variables onto the loading matrix to 

generate their scores.  The variable with the highest score is 

identified as the root cause of the process fault because it is 

the highest variance on that time.  For better visual 

understanding, the contribution plot can be displayed as a bar 

chart, showing the scores of the individual variables. 

This section is the proposed method of TMSPC which 

composes of data collection, transformation and feature 

extraction, then monitoring chart, control limit and fault 

dection and diagnosis are established.  The next section will 

be a demonstration of applying TMSPC to solar 

photovoltatic system. 

III. CASE STUDY 

A. Solar Photovoltaic System 

To illustrate the use of TMSPC, a solar photovoltaic 

system at Research & Development Institute, Nakhon 

Phanom University, Thailand (RDI-NPU)  is used as a case 

study.  Fig.  2 depicts the diagram of the solar photovoltaic 

system installed at RDI- NPU.  The system consists of 30 

crystalline solar panels ( SPOT model S- 170- 24) , with 6 

panels connected in series and 5 of these series-connected 

sets arranged in parallel. The panels are linked to an inverter 

(LEONICS model G-304), which converts the electricity for 

distribution to the RDI- NPU building.  Additionally, the 

building draws electricity from the Provincial Electricity 

Authority ( PEA) .  During operation, seven variables are 

recorded every second: DC voltage [V], DC current [A], AC 

voltage [V], AC current [A], humidity [%], temperature [°C], 

and electricity from PEA [V]. The data is logged in a file on 

the data logger (DX2000-Wisco Industrial Instruments) and 

can be analysed using universal viewer software 

(SMARTDAC+ STANDARD). 

B. TMSPC for solar system 

In this demonstration, the collection of data for 17 days 

were use as dataset therefore the dimension of data should be 

X[17 × 7 × 86400], which means 17 days, 7 variables and 

86,400 sec. However, the data were divided for training and 

verifying as 70:30 or 12 days for training dataset and the rest 

for verifying. Hence, the training dataset were X[12 × 7 × 

86400]. Fig. 3 shows the plots of individual variable of 

training dataset (12 days) in 86,400 sec. Note that the 12 days 

were selected from the best normal operational condition. 

For TMSPC, the dataset was transformed to X86400[12 × 7]. 

In the pre-processing, data X86400[12 × 7] was standardised 

by subtracting with mean and dividing with standard 

deviation of individual variable. Then, the TPCA was further 

processed to determine score and loading matrix of the 

training dataset at each time. 

The score and loading matrices for each time point in 

seconds can be calculated using TPCA as shown in Eq. (3). 

Fig. 4 displays the cumulative scores of the principal 

component (PC) over time. It is evident that the first principal 

component (PC1) captures at least 77.27% of the information 

from the trained data. Consequently, using just one PC is 

 
Fig. 2.  Diagram of solar photovoltaic system install at RDI-NPU. 

  

 
Fig. 3 Dataset for training which composed of 12 days and 7 variables: (a) DC 
voltage, (b) DC current, (c) AC voltage, (d) AC current, (e) humidity, (f) 

temperature and (g) voltage from PEA.  

 
Fig. 4 Score of individual principal component along the time processed by 

TPCA. 
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sufficient for creating monitoring charts, meaning that R can 

be selected of 1. This implies that instead of monitoring 

seven variables, monitoring only the first PC can account for 

at least 77.27% of the information. 

Fig. 5 displays 𝑇𝑘
2 monitoring charts for the trained data. 

The original seven variables were reduced to a single 

principal component (PC1) for constructing the chart. Using 

an upper control limit 𝑇𝑈𝐶𝐿
2   for Phase I (Eq. (6)) and set at a 

95% confidence level, the variables remain below this 

threshold. This indicates that the trained data is of sufficient 

quality for future predictions. 

 

C. Fault detection & diagnosis 

The remaining data was used for evaluating the 

performance of TMSPC. Firstly, fault detection was 

evaluated. When the new data obtained, seven variables at 

individual time k were standardised and the scores of the new 

data were calculated using Eq. (4) and constructing 𝑇𝑘
2 from 

Eq. (5). Fig. 6 represents the 𝑇𝑘
2 of all 5 new data. As can be 

seen in the figure that, there were some events that 𝑇𝑘
2 higher 

than 𝑇𝑈𝐶𝐿
2 . This means the faults were detected. 

When the fault was detected, fault diagnosing is 

consequent process for evaluation. By considering individual 

dataset, as can be seen in Fig. 6 for only data15, there were 

faults detected along the daytime. To diagnose the root cause 

of the fault, i.e., which variable caused the fault, this can be 

determined by using contribution plot. By picking the time 

 
Fig. 5 Transformation of the training dataset from 7 variables to only one 

principal component (PC1) and all variables are lower than 𝑇𝑈𝐶𝐿
2 . 

 

 
Fig. 7 Contribution plot of all variables; (a) when Hotelling’s 𝑇𝑘

2 less than 

𝑇𝑈𝐶𝐿
2 , (b) when Hotelling’s 𝑇𝑘

2 greater than 𝑇𝑈𝐶𝐿
2 . 

 

 
Fig. 8 Plot of all variable of data15 at time 47,619 sec. 

 

 
Fig. 6 Hotelling’s 𝑇𝑘

2 of test 5 new data. There are many faults occurred. 

 

(a) 

(b) 
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that 𝑇𝑘
2 > 𝑇𝑈𝐶𝐿

2 , for example at time 47,619 sec, 𝑇47,619
2  = 

46.65 > 𝑇𝑈𝐶𝐿
2 = 5.24, then calculating contribution plot 

following from Eq. (4). 

Fig. 7 illustrates the contribution plot for the selected time 

intervals. In Fig. 7(a), the contribution plot during the NOC 

shows that the score for each variable is very small, and the 

sum of the squares of the scores is less than 𝑇𝑘
2. 

Contribution plot while out of NOC, score of the root 

cause will be large. At time k = 47,619 sec, the fault was 

detected and, if considering Fig. 7(b), the variable DC 

voltage contributed the highest score. This means DC 

voltage variable was the root cause of the fault at time 47,619 

sec. This can be done similarly for all other faults. 

Returning to the original variable data15 at time 47,619 

sec or X47619, Fig. 8 shows graphical presentation of all seven 

variables versus time. As can be seen in Fig. 7(a), DC voltage 

at time 47,619 sec was fluctuated therefore this should be the 

reason of fault occurred. This is agreed with the diagnosing 

using contribution plot (Fig. 8). Although, DC current 

variable also fluctuated, the cause was less effect than DC 

voltage and it was the second most effected. The knowledge 

for this technique may be used as further maintenance or 

energy management. 

IV. CONCLUSION 

TMSPC has been introduced as a method for monitoring 

and diagnosing faults in solar photovoltaic systems, which 

are inherently time-varying. This tool uses TPCA to reduce 

the dimensionality of seven photovoltaic variables down to a 

single principal component. Subsequently, Hotelling’s 𝑇𝑘
2 

statistic and a contribution plot are employed as a monitoring 

chart and diagnostic tool, respectively. Both tools can detect 

and diagnose faults occurring in the system at specific times. 

This technique can also be applied to other time-varying 

processes, such as chemical batch processing. 
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